Here's a brief summary:

$$
\text { Graphing } y=a(x-h)^{2}+k \text { and } y=a x^{2}+b x+c
$$

1. If $a>0$, the graph opens upward. If $a<0$, the graph opens downward.
2. The vertex of $y=a(x-h)^{2}+k$ is (h, k).

3. The x-coordinate of the vertex of $y=a x^{2}+b x+c$ is $x=-\frac{b}{2 a}$.

Definition of a Parabola
A parabola is the set of all points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the focus, that is not on the line (see Figure 9.29).

Axis of Symmetry: \qquad
\qquad
\qquad

Vertex: \qquad

FIGURE 9.29

Standard Equation of a Parabola

The standard form of the equation of a parabola with vertex at (h, k) is as follows.

$$
\begin{array}{ll}
(x-h)^{2}=4 p(y-k), p \neq 0 & \text { Vertical axis, directrix: } y=k-p \\
(y-k)^{2}=4 p(x-h), p \neq 0 & \text { Horizontal axis, directrix: } x=h-p
\end{array}
$$

The focus lies on the axis p units (directed distance) from the vertex. If the vertex is at the origin $(0,0)$, the equation takes one of the following forms.

$$
\begin{array}{ll}
x^{2}=4 p y & \text { Vertical axis } \\
y^{2}=4 p x & \text { Horizontal axis }
\end{array}
$$

See Figure 10.11.

(a) $(x-h)^{2}=4 p(y-k)$ Vertical axis: $p>0$ FIGURE 10.11

(b) $(x-h)^{2}=4 p(y-k)$
Vertical axis: $p<0$

(c) $(y-k)^{2}=4 p(x-h)$
Horizontal axis: $p>0$

(d) $(y-k)^{2}=4 p(x-h)$ Horizontal axis: $p<0$
1.) Find the vertex, focus, and directrix of the parabola given by: $(x-3)^{2}=8(y+1)$.

Then graph it.

Coordinate of Vertex:

Direction it opens:

Axis of Symmetry:

2.) Find the vertex, focus, and directrix of the parabola given by: \qquad .

Then graph it.

Coordinate of Vertex:

Direction it opens:

Equation of Directrix:
s
3.) Find the vertex, focus, and directrix of the parabola given by: $y^{2}+2 y+12 x-23=0$.

Then graph it.

Coordinate of Vertex:

Direction it opens:

Axis of Symmetry:

Coordinates of Focus:

Equation of Directrix:

\qquad .

Then graph it.

Coordinate of Vertex:

Direction it opens:

Axis of Symmetry:

Coordinates of Focus:

Equation of Directrix:

5.) Find the vertex, focus, and directrix of the parabola given by: $y=-\frac{1}{2} x^{2}-x+\frac{1}{2}$.

Then graph it.

Coordinate of Vertex:

Direction it opens:

Axis of Symmetry:

Coordinates of Focus:

Equation of Directrix:

6.) Find the standard form of a parabola with vertex at the origin and focus $(0,4)$.

8.) Find the standard form of a parabola with :

7.) Find the standard form of a parabola with vertex $(1,0)$ and focus $(2,0)$.

9.) Find the standard form of a parabola with:
10.) Find the standard form of the equation of the parabola if the vertex is $(0,4)$ and the directrix is $y=2$.

