Here's a brief summary:

Graphing
$$y = a(x - h)^2 + k$$
 and $y = ax^2 + bx + c$

- **1.** If a > 0, the graph opens upward. If a < 0, the graph opens downward.
- **2.** The vertex of $y = a(x h)^2 + k$ is (h, k).

3. The x-coordinate of the vertex of $y = ax^2 + bx + c$ is $x = -\frac{b}{2a}$.

Definition of a Parabola

A parabola is the set of all points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the focus, that is not on the line (see Figure 9.29).

Standard Equation of a Parabola

The **standard form of the equation of a parabola** with vertex at (h, k) is as follows.

$$(x - h)^2 = 4p(y - k), p \neq 0$$

Vertical axis, directrix: y = k - p

$$(y-k)^2 = 4p(x-h), p \neq 0$$

Horizontal axis, directrix: x = h - p

The focus lies on the axis p units (*directed distance*) from the vertex. If the vertex is at the origin (0, 0), the equation takes one of the following forms.

$$x^2 = 4py$$

Vertical axis

$$y^2 = 4px$$

Horizontal axis

See Figure 10.11.

Vertical axis: p > 0

(d) $(y - k)^2 = 4p(x - h)$ Horizontal axis: p < 0

1.) Find the vertex, focus, and directrix of the parabola given by: $(x-3)^2 = 8(y+1)$.

Then graph it.

FIGURE 10.11

Coordinate of Vertex:

Direction it opens:

Axis of Symmetry:

Coordinates of Focus:

Equation of Directrix:

2.) Find the vertex, focus, and directrix of the parabola given by: _______.

Then graph it.

Coordinate of Vertex:

Direction it opens:

Axis of Symmetry:

Coordinates of Focus:

Equation of Directrix:

3.) Find the vertex, focus, and directrix of the parabola given by: $y^2 + 2y + 12x - 23 = 0$.

Then graph it.

Coordinate of Vertex:

Direction it opens:

Axis of Symmetry:

Coordinates of Focus:

Equation of Directrix:

4.) Find the vertex, focus, and directrix of the parabola given by: ______

Then graph it.

Coordinate of Vertex:

Direction it opens:

Axis of Symmetry:

Coordinates of Focus:

Equation of Directrix:

5.) Find the vertex, focus, and directrix of the parabola given by: $y = -\frac{1}{2}x^2 - x + \frac{1}{2}$.

Then graph it.

Coordinate of Vertex:

Direction it opens:

Axis of Symmetry:

Coordinates of Focus:

Equation of Directrix:

6.) Find the standard form of a parabola with vertex at the origin and focus (0, 4).

8.) Find the standard form of a parabola with :

7.) Find the standard form of a parabola with vertex (1, 0) and focus (2, 0).

9.) Find the standard form of a parabola with:

10.) Find the standard form of the equation of the parabola if the vertex is (0, 4) and the directrix is y = 2.

