PreCalculus

Notes: 6.1 Law of Sines
Name
Date
_ Block____

Block

Oblique Triangles:

Law of Sines can be used to solve a triangle when you're given:

Formula:

Use the Law of Sines to solve each triangle.

1. $C=102^{\circ}$
$B=29^{\circ}$
$b=28$ feet
2. $A=43^{\circ}$
$c=22$
$B=98^{\circ}$

The Ambiguous Case:
Three possible solutions can occur:
1.) \qquad
2.) \qquad
3.) \qquad

Use the Law of Sines to solve each triangle.
3.

$a=22$ inches $b=12$ inches $c=$ $A=42^{\circ}$ $B=$ $C=$	$a=22$ inches $b=12$ inches $c=$ $A=42^{\circ}$ $B=$ $C=$ (if needed)

4.

$a=15$ $b=25$ $c=$ $A=85^{\circ}$ $B=$ $C=$	$a=15$ $b=25$ $c=$ $A=85^{\circ}$ $B=$ $C=$ (if needed)

5.

$a=12$ meters $b=31$ meters $c=$ $A=20.5^{\circ}$ $B=$ $C=$	$a=12$ meters $b=31$ meters $c=$ $A=20.5^{\circ}$ $B=$ $C=$ (if needed)

6.

$a=$ $b=46$ $c=29$ $A=$ $B=$ $C=31^{\circ}$	$a=$ $b=46$ $c=29$ $A=$ $B=$ $C=31^{\circ}$ (if needed)

7. The course for a boat race starts at point A in the figure shown below and proceeds in the direction S $52^{\circ} \mathrm{W}$ to point B, then in the direction $\mathrm{S} 40^{\circ} \mathrm{E}$ to point C, and finally back to A. Point C lies 8 kilometers directly south of point A. Approximate the total distance of the race course.

