PreCalculus	Name	
Notes: 6.1 Law of Sines	Date	Block
Oblique Triangles:		
Law of Sines can be used to solve a triangle when you're given:		

Formula:

Use the Law of Sines to solve each triangle. 1. $C = 102^{\circ}$ $B = 29^{\circ}$

b = 28 feet

2. $A = 43^{\circ}$ c = 22 $B = 98^{\circ}$ The Ambiguous Case: Three possible solutions can occur:

Use the Law of Sines to solve each triangle.

3.
\mathcal{I}

a = 22 inches	a = 22 inches
b = 12 inches	b = 12 inches
<i>c</i> =	<i>c</i> =
$A = 42^{\circ}$	$A = 42^{\circ}$
B =	B =
<i>C</i> =	<i>C</i> =

4.

<i>a</i> = 15	<i>a</i> = 15
<i>b</i> = 25	<i>b</i> = 25
<i>c</i> =	<i>c</i> =
$A = 85^{\circ}$	$A = 85^{\circ}$
<i>B</i> =	<i>B</i> =
<i>C</i> =	<i>C</i> =

5. a = 12 meters b = 31 meters c = $A = 20.5^{\circ}$ B = C = a = 12 meters b = 31 meters c = $A = 20.5^{\circ}$ B = C = C =

7. The course for a boat race starts at point *A* in the figure shown below and proceeds in the direction S 52° W to point *B*, then in the direction S 40° E to point *C*, and finally back to *A*. Point *C* lies 8 kilometers directly south of point *A*. Approximate the total distance of the race course.

